Alesis Multimix 8 USB FX Timeout Error 0x0005

June 25, 2020 at 4:28 pm (computers, moan, music) (, , , )

This is another one of those “lots of people must have found this error but no-one seems to know the answer” queries…

We’ve acquired an Alesis Multimix 8 USB FX mixer with a USB interface to the PC.  If you just plug this in, it is found by Windows and all is good.  But there is a driver on the Alesis website which implies there is additional functionality.

However, when you try to install it you get a “Timeout Error 0x0005” half way through, and this seems pretty common on the Internet, but suggested fixes involve uninstalling, registry cleaners, and all sorts of mucking about which could easily lose you an afternoon.

Except no-one seems to mention that there are two Alesis Multimix 8 USB FX mixers – the USB FX and the USB 2.0 FX.  The former (that we have) does not require a driver, it seems to stream a single audio channel to the PC using the standard Windows drivers with no additional installation required.  The latter, does require a driver, as I think it can stream the different channels independently to the PC.  By the way, if you have the USB 2.0 FX it is strongly recommended that you don’t plug it in until you install the driver and it asks you to.

Now quite why the developers couldn’t have spotted this on installation and pop up a nice friendly “Hey, looks like you’ve plugged in the confusingly similarly named Multimix 8 USB FX which doesn’t need a driver” I don’t know.  Instead the installation is left looking for the USB 2.0 FX, which quite naturally doesn’t exist, so it simply times out.

So, if you get this error – make sure you are using an Alesis Multimix 8 USB 2.0 FX which needs a driver – and not the Alesis Multimix 8 USB FX which doesn’t.

I haven’t looked into the difference between the two in detail, so if you are planning on buying one, it would be worth having a look to see if you need the USB 2.0 FX or the USB FX.

Kevin

Permalink Leave a Comment

MiniMO Compatible 4-Pot ADSR

May 21, 2020 at 12:18 pm (computers, maker, music) (, , , )

I’ve been enjoying having a play with the MiniMO synth, now I can programme it easily, but although I seriously like the idea of a piece of common hardware with software-defined synth personalities, I just found the ADSR with a single potentiometer just too limiting and not responsive enough for trying things out.

So I’ve sacrificed the common hardware and created a MiniMO compatible (i.e. based on the same circuit and code) 4-potentiometer ADSR instead.  To continue to use an ATtiny85 though requires a few compromises:

  • There is no button or LED.
  • There is no CV input to control the ADSR parameters (although this could be added).
  • The pots are always “live” – changing them will instantly change the parameter they represent.
  • And I needed to reclaim the ATtiny85 RST pin (pin 1) as an I/O pin.

If you are familiar with the ATtiny85 you’ll know that there is a fuse setting that will disable its response to the RST signal on pin 1 allowing you to use it as an additional I/O pin.

But you will also therefore probably know that this means you can no longer program it using the normal methods!  Once that fuse is set the only way to get back into your device is using a High Voltage Serial Programmer (HVSP).  There are a number of designs around the Internet for these and I’ve build some of them myself so can confirm they work.  The one I tend to use is a variation on this one with both 8-pin and 14-pin sockets, driven by an ATtiny2313 and some tweaked code to act as a “fuse resitter”.  I’ll perhaps post about that at some point.

You can’t set the RSTDISBL fuse from within the Arduino environment, so the general procedure is as follows:

  • Set your parameters as required for your device.
  • In “preferences” enable verbose messages on upload.
  • “Burn bootloader” to set the existing fuses – this will give you the command used to set the fuses.
  • In “preferences” disable verbose messages on upload again (if you want).
  • Upload your sketch to the ATtiny85.

THE NEXT COMMAND WILL “BRICK” YOUR DEVICE IF YOU DON’T HAVE A HVSP.

  • Copy the command to set the fuses and update the hfuse value to set the RSTDISBL flag (i.e. put it to zero) and run it in a command window.

Running through the above, my “burn bootloader” command looks like this:

[PATH TO AVRDUDE]/avrdude -C[PATH TO AVRDUDE CONF]/avrdude.conf -v      -pattiny85 -cusbtiny -e -Uefuse:w:0xFF:m -Uhfuse:w:0b11010111:m         -Ulfuse:w:0xE2:m -Uflash:w:[PATH TO BOOTLOADER]empty_all.hex:i

I am using a USBtiny programmer. We only want the hfuse “write” command (and really don’t want the -e option which erases the sketch in memory). You can use a ATtiny85 fuse calculator to see what the value should be – for example, see this one.

First I read back the just set hfuse value.

[PATH TO AVRDUDE]/avrdude -C[PATH TO AVRDUDE CONF]/avrdude.conf -v      -pattiny85 -cusbtiny -Uhfuse:r:out.txt

Then write the new value as calculated by the fuse calculator – RSTDISBL is the top bit of the hfuse, so for me, it read back 0xD7, so I write out 0x57 – running this command WILL “BRICK” YOUR DEVICE if you don’t have a HVSP.

[PATH TO AVRDUDE]/avrdude -C[PATH TO AVRDUDE CONF]/avrdude.conf -v      -pattiny85 -cusbtiny -Uhfuse:w:0x57:m

So with all that out of the way, this is the circuit and code I used to get a MiniMO compatible 4-potentiometer ADSR.MinoMo-ADSR2-2_schem

As I said, I’ve sacrificed some of the hardware, but the pot input stage is the same (just repeated four times), and the output and gate stages are the same as the original MinoMO design, but the output is on a different pin to free up all four ADCs. It has moved from using OC1B as the PWM output to using OC1A instead.

The code is a lot simpler as it isn’t having to handle the button and shared parameter setting via the single pot.  Instead the potentiometer values are read “live” in my version.

/*
//************************
//*      miniMO ADSR     *
//*   2016 by enveloop   *
//************************
//
   
Home
CC BY 4.0 Licensed under a Creative Commons Attribution 4.0 International license: http://creativecommons.org/licenses/by/4.0/ // --- Kevin --- Updated to build on recent Arduino IDE with ATTiny Core from: https://github.com/SpenceKonde/ATTinyCore ADSR Re-written to use four individual potentiometers and reduced inputs. Note: this sacrifices the LED output, button for input, control inputs on the pots and relies on repurposing RST as an I/O pin (see below). It also switches the output from digital I/O 4 (pin 3) to digital I/O 1 (pin 6) so that ADC4 can be used. This means switching the PWM output from OC1B on compare to OC1A. I/O 1 and 2: Outputs - control voltage (usually for amplitude) 3: Not connected - but could optionally double with the potentiometers as per the original design 4: Input - gate (note ON/OFF) Mapped to ATtiny85 I/O: --------- ADC0 - 5/A0 - PB5 - | 1 8 | - VCC ADC3 - 3/A3 - PB3 - | 2 7 | - PB2 - 2/A1 - ADC1 ADC2 - 4/A2 - PB4 - | 3 6 | - PB1 - 1 - OC1A - PWM (Output) GND - | 4 5 | - PB0 - 0 - dig I/P (Gate) --------- Map potentiometers to ADSR: ADC0 (5) - (A)ttack ADC1 (2) - (D)ecay ADC3 (3) - (S)ustain ADC2 (4) - (R)elease NOTE: To use ADC0 need to programme the fuses to repurpose RST as an I/O pin which means it is no longer possible to programme the ATtiny85 except with a high voltage serial programmer (HVSP). --- Kevin --- */ #include <avr/io.h> #include <util/delay.h> // Define Arduino pin numbers - NB: Digital and Analogue have different numbers! #define ADSR_A 5 // PB5 = ADC0 - digital I/O 5 (pin 1) is the repurposed RST pin #define ADSR_ALG_A A0 #define ADSR_D 2 // PB2 = ADC1 #define ADSR_ALG_D A1 #define ADSR_S 3 // PB3 = ADC3 #define ADSR_ALG_S A3 #define ADSR_R 4 // PB4 = ADC2 #define ADSR_ALG_R A2 #define ADSR_G 0 // Gate input #define ADSR_O 1 // OC1A output int ADSR_adc[] = { ADSR_ALG_A, ADSR_ALG_D, ADSR_ALG_S, ADSR_ALG_R }; volatile unsigned int globalTicks; //output int envelopeValue; //envelope stage control; bool readyToAttack = true; bool readyToRelease = false; const int attackLevel = 255; int currentStep = 0; int ADSR[] = { 0, //attackLength 1, //decayLength 255, //sustainLevel 0 //releaseLength }; void setup() { //disable USI to save power as we are not using it PRR = 1<<PRUSI; ADMUX = 0; //reset multiplexer settings pinMode(ADSR_G, INPUT); //digital input (gate) pinMode(ADSR_O, OUTPUT); //output (PWM on OC1A) pinMode(ADSR_A, INPUT); //analog- ADC0 - (A)ttack pinMode(ADSR_D, INPUT); //analog- ADC1 - (D)ecay pinMode(ADSR_S, INPUT); //analog- ADC2 - (S)ustain pinMode(ADSR_R, INPUT); //analog- ADC3 - (R)elease //set clock source for PWM -datasheet p94 PLLCSR |= (1 << PLLE); // Enable PLL (64 MHz) while (!(PLLCSR & (1 << PLOCK))); // Ensure PLL lock PLLCSR |= (1 << PCKE); // Enable PLL as clock source for timer 1 cli(); // Interrupts OFF (disable interrupts globally) //PWM Generation -timer 1 TCCR1 = (1 << PWM1A) | // PWM, output on PB1, compare with OCR1A (see interrupt below), reset on match with OCR1C (1 << COM1A1) | (1 << CS10); // no prescale OCR1C = 0xff; // 255 //Timer Interrupt Generation -timer 0 TCCR0A = (1 << WGM01); // Clear Timer on Compare (CTC) with OCR0A TCCR0B = (1 << CS01); // prescaled by 8 OCR0A = 0x64; // 0x64 = 100 //10000hz - 10000 ticks per second TIMSK = (1 << OCIE0A); // Enable Interrupt on compare with OCR0A sei(); // Interrupts ON (enable interrupts globally) } //Timer0 interrupt ISR(TIMER0_COMPA_vect) { //10000 ticks per second globalTicks++; } void loop() { setADSR(); triggerADSR(); } void setADSR(){ // Read one each scan if (currentStep == 2) setLevel(currentStep); // S is a level not a length else setLength (currentStep); // ADR are all lengths currentStep++; currentStep &= 0x03; } void setLength(int step) { int lengthRead = analogRead(ADSR_adc[step]) >> 6 ; //values between 0-15 ADSR[step] = lengthRead; } void setLevel(int step) { int levelRead = analogRead(ADSR_adc[step]) >> 2 ; //values between 0-255 ADSR[step] = levelRead; } int checkGATE() { return (PINB & (1<<ADSR_G)); } void triggerADSR() { // Check the Gate input if (checkGATE()) { if (readyToAttack){ readyToAttack = false; readyToRelease = true; readADS(); } } else{ if (readyToRelease){ readyToAttack = true; readyToRelease = false; readR(); } } } void readADS() { int attackLength = ADSR[0]; int decayLength = ADSR[1]; int sustainLevel = ADSR[2]; //ATTACK if (attackLength == 0) OCR1A = attackLevel; else { globalTicks = 0; for (envelopeValue = 0; envelopeValue <= 255; ){ OCR1A = envelopeValue; if (globalTicks >= attackLength) { envelopeValue++; globalTicks = 0; } } } //DECAY globalTicks = 0; if ((decayLength == 0) || (sustainLevel == attackLevel)) OCR1A = sustainLevel; else{ if (sustainLevel < attackLevel){ for (envelopeValue = attackLevel; envelopeValue >= sustainLevel; ){ OCR1A = envelopeValue; if (globalTicks >= decayLength) { envelopeValue--; globalTicks = 0; } } } } //SUSTAIN --nothing to do, we keep the last value until the "note off" trigger } void readR() { int sustainLevel = ADSR[2]; int releaseLength = ADSR[3]; //RELEASE if (releaseLength == 0) OCR1A = 0; else { OCR1A = sustainLevel; globalTicks = 0; for (envelopeValue = sustainLevel; envelopeValue >= 0;){ if (checkGATE()){ //if during R stage there's a trigger, silence and exit OCR1A = 0; return; } OCR1A = envelopeValue; if (globalTicks >= releaseLength) { envelopeValue--; globalTicks = 0; } } } }

I made one up and am pretty pleased with the results!

2020-05-21 13.10.52

Kevin

 

Permalink Leave a Comment

Programming a MiniMO Synth

April 19, 2020 at 12:03 pm (computers, maker, music, Uncategorized) (, , )

I’ve been playing with a home-grown version of the MiniMO synth as the creator has very kindly put the designs out into the public domain.

But a key issue with programming the ATtiny85 devices used in the synth is incompatibility with the latest versions of the Arduino IDE and the SpenceKonde ATTiny85 core that is now easily installed within it.

Warning: The official advice is still to build using Arduino 1.5.7, so treat all this as unverified and experimental.

I did have a look at this in the past and the issue seems to be one of incompatible timers, that I’ve described before.  The MinoMO uses both timers of the ATTiny85, but by default the core assumes the use of Timer 0 overflow interrupt for the delay/millis function, but several of the programmes for the MiniMO also want to use the overflow interrupt.

Expanding on the solution described in my previous post  – if we are assuming an 8-bit timer then it will overflow at 255, so setting the compare-on-match to 255 should have the same effect, but generate the TIMER0_COMPA_vect interrupt instead (at least for the mode being used here).

However, there is one caveat to all this.  The MiniMO synth code (I’m looking at the DCO code right now) sets the following parameters for Timer 0:

  //Timer Interrupt Generation -timer 0
  TCCR0A = (1 << WGM01) | (1 << WGM00); // fast PWM
  TCCR0B = (1 << CS00);                // no prescale
  TIMSK = (1 << TOIE0);                // Enable Interrupt on overflow

As far as I can see the original use of Timer 0 in the ATTiny Core is Fast PWM but with a prescalar value of 64.  Changing it to no prescale value here means that the “tick” used for the delay and millis functions is now running 64 times faster than previously assumed.

I’m guessing the author had the same issue in the original code though (although presumably with the settings for Timer 1), as in almost all other cases he uses the library function _delay_ms() rather than the Arduino function delay() or millis() – there is one exception – a couple of functions called on power-up prior to changing the timer values, which use the Arduino delay() function.

So from what I can see for the few programmes I’ve used with the MiniMO so far, I believe this is probably the only thing that needs changing if programming your own from the latest Arduino IDE and SpenceKonde ATTiny85 Core.  At least, on manual review of the code so far, I’ve not spotted any potential issues with having delay() and millis() running too fast!  But this isn’t an extensive review, and I repeat, the official advice is still to use an older version!

I don’t have an original MiniMO to compare waveforms to see if all the timing appears correct or not, but so far, I’ve been able to calibrate the frequency of the DCO (required as my ATTiny85 had no pre-set values stored in EEPROM), change waveforms, and see all three frequency ranges.

The fuse settings I used (as detailed by the menus in the SpenceKonde Core for ATTiny85 and then set using “burn bootloader”) were:

  • 8 MHz Internal
  • B.O.D disabled
  • EEPROM not retained (removes calibration data on re-programming)
  • Timer 1 Clock = CPU
  • LTO = Enabled
  • millis = Enabled

Which translates over into the following fuse settings:

  • efuse: 0xFF
  • hfuse: 0xDF
  • lfuse: 0xE2

I’d really like to know if anyone can compare the waveforms and frequencies generated by an original MinoMO DCO with one programmed with the above to see if they are the same.  Either way, for me I have a functioning unit, programmed using a current version of the Arduino IDE and ATTiny85 support and look forward to trying some of the other programmes for it too.

Of course, a massive thanks to Jose of course for putting the designs out there for experimentation like this in the first place.

Kevin

 

Permalink Leave a Comment

3U 8HP 4 Channel Panning Mixer

July 14, 2019 at 7:01 pm (maker, music) (, , , )

As I mentioned in my last post, I used an off-the-shelf 4 channel mixer board in my synth-in-a-box, but I wanted it to be accessible as a eurorack modular panel.  I also wanted it to take mono inputs and be able to set the panning as required to the L or R channels of the mixer.  I managed to squeeze it into one of my 3U, 8HP panels.

Now I didn’t need an on/off switch, and I wanted some space to add a stereo output jack, so I removed the switch and soldered a couple of links in its place as can be seen in the bottom left of this photo.  The plan was to pass the pots through the panel and use leads to connect sockets to the inputs and output.

2019-07-09 19.17.12

The panning circuit was quite simple.  I found it in the book “Make: Analog Synthesizers” by Ray Wilson from MFOS.  In chapter 7 he describes a simple circuit to allow you to hook up your (mono) sound output to a (stereo) PC sound card. It involves a 10k pot and four 2k resistors, with the wiper of the pot connected to ground.  Full details can be found in the book.

For me, I was planning to just solder the resistors directly onto the pots and sockets and then use a short stereo cable to connect to the input sockets of the mixer.  This is all shown in the following photos (complete with my dodgy machining skills).

The four input sockets are mono of course, with the stereo input signal coming off the resistor network.  The output socket is stereo. I soldered the four resistors for each channel together first then “applied” them to the pot and socket.

Then it was just a case of adding the mixer itself and making a simple power cable from the 16-pin eurorack connector to the DC barrel jack.

I used the four knobs that came with the mixer as the pan-pot knobs, as they were nice and small.  Then I used some generic ebay knobs for the volume controls.

When it came to fixing into the rack, I ended up soldering on an additional stereo lead to the output so it can be routed internally straight to the amp.  So in normal use, the output socket isn’t needed, but I can power off the amp and use the output if I wanted to send the audio off to an external amp.

I’m really pleased with how it came out. Not bad for a $15 board and a handful of components.

Kevin

Permalink 1 Comment

Modular Synth in a Box

July 14, 2019 at 2:30 pm (maker, music) (, , , )

Inspired by Morocco Dave who built a small “almost 5U” modular synth case out of a plastic storage box, I have created one of my own.  My goal was to build something that could take Eurorack modules, so looking at around 3U high modules, so for me the best layout was a dual-rack layout with the box standing vertically as follows.

2019-06-16 15.33.08

The box is a common “9 litre” box, with rough external dimensions of approximately 40x25x15 cm.  Mine came from a local discount store.

I’ve just used a few pieces of wood for the cross-bars and covered them with some of that aluminium tape you can buy for patching up cars.  The measurements are taken from the Eurorack standards and based on the instructions from the Synth-DIY Modular Synth Cabinet Howto from MFOS, gives me around 44HP of module space.  Each module has around 10cm height of usable clearance for electronics and

I created two bus-bars following the 16-pin Eurorack power standard out of stripboard and build and connected up a PSU from Frequency Central (£10 for the PCB).  The whole thing is powered using a 12AC “wallwart” power supply via a barrel jack socket on the side.  I drilled out a grid of holes top and bottom to allow air to circulate.

In addition I created a set of USB sockets hanging off the +5V line from the PSU as some of the modules I’m using will be Arduino and similar based, being to power directly from USB will be really useful.  The PSU is probably not powerful enough for an entire rack full of modules, but the idea is to have a platform that allows experimenting and playing around with designs, so that isn’t a major issue right now.

In terms of power bus cabling, I have a whole pile of old IDE cables so I picked up a bulk set of 16-pin IDC connectors and can now make my own bus cables.  The first one was the connector shown in the first photos, linking the PSU to the two stripboard buses.

I wanted a cheap way to make panels for modules, and in the end opted for a supplier on ebay who provides 2m lengths of 2x40mm wide flat aluminium bars.  This particular supplier also included some basic cutting, so for less than £25 I’ve ended up with a whole pile of approx. 260x40x2mm aluminium panels I can cut further as required.

I just use a wire brush to give a “brushed aluminium” finish.  If you want to follow this path, look up “aluminium flat bar” on ebay, and be warned that a cheap supplier will not be giving you accurate dimensions if cutting them for you!  I know 40mm wide isn’t a standard “HP” module width, but as it is almost 8HP, its fine for me.

One thing I was particularly keen to do was have a complete “synth in a box” and by that I wanted to include some basic amplification and speakers.  I had some speakers from an old CRT TV set that seemed pretty good for their size, so then looked around for means of amplification and mixing.  Again basic modules on ebay solved this for me, and I ended up with a cheap 4-way mixer board ($14) and amplifier ($5).  The mixer is based on a NJM3414 low-voltage, high-current op-amp and the amplifier is based on a TDA7297.  Both can be powered from a 12v supply and the amplifier claims 2x15W output.

I’ve built the mixer into a panel and added some simple panning “front ends” to each input, but I’ll leave details of how I did that for another time.  For now, here is the basic case with built-in stereo speakers and amp.

Being able to just unplug the power and pick the whole thing up is great.

My physical construction skills are not particularly great.  I don’t have the patience to do a really good job, and don’t have the skills, tools or experience for anything approaching any kind of professional finish.  But for a homemade “just for me” project,  I’m really please with the results.

Kevin

 

 

Permalink 1 Comment

Surfing on Entropy

March 21, 2019 at 10:28 am (art, computers, music) (, , , )

I was passed a link to this interesting comment from Brian Eno: “There is not enough Africa in computers” (thanks Richard).

I’ve now read this a couple of times and was still left wondering quite what lay behind the comment.  So I tried to find the original interview between Kevin Kelly (then editor of Wired I believe) and Brian Eno so I could read it in full.  Unfortunately it isn’t on the same link anymore, but with some googling, you can find it in the Wired archive here.

There are a number of really fascinating discussion points – I really recommend reading the whole article – and it provides the context for that isolated quote. I did find some of the answers a little contradictory at times though.

A disclaimer, to date the music and views of Brian Eno seems to have passed me by, so these comments start with this interview in isolation. I look forward to seeing what he would say now and finding more about his ideas of generative music.

On the one hand I believe he is saying he doesn’t like the “set it in motion and it will perform predictably” aspect of computers – he likes the idea of providing inspiration and guiding principles that may or may not produce something depending on the live inputs of the viewer/reader/listener – he appears to like the serendipity of it all … but later on he talks of “black boxes for music” where he has set the rules and the box produces the music according to those rules, with some input from the listener depending on their mood.  The box become some combination of player and instrument if I understand his view correctly.

Right near the start of the interview, he suggests that the orchestral tradition is too constraining, but I see it as a (more limited admittedly) set of programmable components ready to do the composer’s bidding.

When you look at how the orchestra developed from Mozart’s time through the Romantic period, contrasting those early Classical period works with Beethoven, Brahms and then the later large scale deployments of Mahler, there is quite a lot of scope for variability there and the basic “machine” evolved enormously through that time. Then when you look at what Stravinsky did in his ballet music or what Debussy did with his completely alternative view of harmony through to the likes of Messiaen recreating birdsong in his Turangalia symphony (including incorporating the electronic Ondes Martinot), then as a “programmable box” an orchestra is actually quite a versatile person/machine system in action.

I guess he doesn’t like the idea that a composer sets the rules and the orchestra is then condemned to just reproduce them.  But I wonder what he thinks about jazz and improvisation? Good jazz still follows rules, but every performance is different. But it isn’t random. Is a jazz ensemble “more Africa” than an orchestra?  Or maybe it is a matter of the illusion on unpredictability.  When I look at something like the Long Player – that is a key set of rules, and you exactly determine what the music will be at any point – but the cycle is so long (designed to last a thousand years) that every time you dip into it, you don’t really know what you will hear.  Or at the other end, is John Cage’s As Slow as Possible where you can go back after several months and the music is still exactly the same.

I guess some of this relates to the difference between analogue and digital.  Digital is obsessed with chopping up the analogue reality into small measurable chunks – be that discrete frequencies that we call semitones in Western music, pixels on a computer screen, or even the digitising of the end results as a digital bit stream to be played back via audio hardware off a CD or MP3.  But even when digital and in theory part of a finite space, that space is so vast as to approximate to the entire musical repertoire or pictorial output of any artist, composer or musician (as least as far as human senses are concerned).

I’ve always been fascinated with the idea of the computer screen representing an unimaginably large single number and that counting through them all would show every possible image that screen could display.

In theory the digitisation of music could be represented the same way – if every note on the piano keyboard had a number 1 to 88, then a piece of music (forgetting rhythm for the moment) is essentially one very long base 88 number.  That’s not too dissimilar to how a pianola worked, although physical layout of the cut-outs are key here, or even MIDI in today’s world, when linked with a sense of the flow of time of course.  I remember my school having a dictionary of musical themes and it basically worked on those lines (although it only worried about a single octave, so it was essentially a 5-10 digit “base 7” number).  I’ve always wanted that book, but so far have never seen one since.

So just because things can be reduced to number and handled by computer, is that any less “Africa” than a free-flowing analogue equivalent?  I guess a key distinction is not necessarily digital vs analogue, but more pre-determined vs unpredictable.

In a weird way, fast forward these last 20 years and computers have become so complex as to be largely unpredictable to many.  Now that these already complex machines are hooked up to the even more complex global machine that is “the Internet” (by whichever definition to choose to use – remember it is just a series of tubes), then most of us would be hard pushed to be convinced by the argument that computers are things that always behave the same way based on the same inputs.

I am reminded here of Bjarne Stroustrup when he said (I believe): “I have always wished for my computer to be as easy to use as my telephone; my wish has come true because I can no longer figure out how to use my telephone.”

I’m also reminded of the fact that computers may soon be able to pass the Turing Test, not because they’ve become as smart as humans, but possible because there is a real possibility that humans are becoming as dumb as computers…

Back to Brian Eno:

“What people are going to be selling more of in the future is not pieces of music, but systems by which people can customize listening experiences for themselves.  Change some of the parameters and see what you get.”

He was after unfinished pieces of musical ideas to be combined in a new form as the listener experiments.  Of course, in a sense he was overestimating the listeners – today listeners want “customized listening experiences” but at the granularity of the song, the tune, not the musical extract or idea or concept.  And they don’t really want the effort of having to produce it themselves.  Of course they have it in droves with on-demand streaming where algorithms are “changing the parameters” on your behalf.

His ideas for evolutionary music and art may still come about, but again probably more by presaging the idea of algorithms creating music and art. But does that make the algorithms the composers and painters?  The jury is still out on that one, but he may well get his “furniture music” this way – his “ubiquitous 24 hours a day” music “infiltrating every waking moment of our lives”.

It is interesting his view on the use of machines.  He suggest we all need to be “surfing on entropy” – to be able to ride the wave of unpredictability and complexity becoming apparent.  I think that is very, very apt today, but the huge irony here being that this unpredictability and complexity has come about by the very components he considered too constrained, “not enough Africa”, now being let loose as they’ve grown more powerful and complex, on the world.

Machines are no longer doing “predictable, boring and repetitive things” – they are the very instruments of uncertainty.  We can still exert influence – by surfing the wave of complexity:

“When you surf, there is a powerful complicated system, but you’re riding on it, you’re going somewhere on it, and you can make some choices about it.”  You either ride it an use it with skill to get your own direction, or you give up and go with the flow.

There is an interesting section discussing the difference between art and science.  Art “doesn’t make a difference” – in that he means that whilst art will stimulate emotions, create large emotional experiences (e.g. watching a film) then end when the experience ends.  Of course, with today’s blended and mixed reality, is that still the case?

A fascinating read, especially with the benefit of 20 years passing in the mean time. The context might be slightly different, but many of the thoughts are still amazingly apt for today.  I’d love to know what he thinks about these thoughts again today.

Kevin

 

Permalink Leave a Comment

ATtiny85 MIDI to CV

March 2, 2019 at 4:07 pm (maker, music) (, , , )

There are a number of projects out there that provide a MIDI to CV function utilising some flavour of the ATtiny family of microcontrollers.  But most of them go from USB MIDI to CV but I wanted a genuine 5-pin DIN MIDI to CV.  This was the result.

It has taken a basic MIDI in circuit from the Internet (Google will find a few of these kicking around) and pairs it with the ATtiny85 CV out section of Jan Ostman’s cheap USB MIDI 2 CV design.

Update: Jan Ostman’s site is no more.  I’ve left my playing here for reference.

The result is as follows (excuse the poor representation in Fritzing, it served its purpose). Note that the 6N138 only had 5 active pins in the Fritzing part, so the extra dodgy link shown below is a fudged link for pin 7 to GND via a 4.7k resistor.

MIDItoCV2_schem

I also have a version for the ATtiny2313, but the main changes are as you’d expect.  Basically I was having problems with the ATtiny85 missing MIDI messages and wondered if a hardware UART would be better.  Turned out it was just my dodgy code with no real error checking getting out of sync with the MIDI stream.  But it took trying it on a 2313 to highlight the real issue, so back to the ATtiny85 and now all is well.

Design wise, its fairly simple ATtiny85 wise with the pin usage as follows:

  • SoftwareSerial receive on D3 (PB3) which is physical pin 2.
  • Gate output on D2 (PB2) which is physical pin 7.
  • CV output using the PWM signal tied to OC1A triggered off timer 1, which is D1 (PB1) on physical pin 6.

The code uses the same trick that Jan Ostman used in his code – if the top compare value for PWM operation is 239 then there are 240 graduations for PWM.  To cover a MIDI range of C2 (note 36) to C7 (note 96) is 60, so the PWM compare value required for a linear CV voltage output is basically (note-36)*4.

In terms of timer control registers, this all translates over to (refer to the ATtiny85 data sheet):

  • Set PWM1A i.e. PWM based on OCR1A
  • Set COM1A1 i.e. Clear OC1A (PB1) output line
  • Set CS10 i.e. Prescaler = PCK/CK i.e. run at Clock speed
  • Clear PWM1B is not enabled (GTCCR = 0)

The value for the PWM cycle is set in OCR1C to 239, and the compare value is set in OCR1A between 0 and 239, thus representing a range of 0 to 5v giving 1v per octave, assuming a 5v power supply.

When porting to the ATtiny2313, a similar scheme was used, but timer 1 is a 16 bit timer, and the control registers were slightly different, but I still used the 0-239 range.

Reading around the different modes, I ended opting for the use of Fast PWM with the compare value in OCR1A and the maximum PWM cycle value (239) in ICR1.  The timer register settings were thus as follows:

Timer 1 Control Register A (TCCR1A):

  • 7 COM1A1 = 1 COM1A1(1); COM1A0(0) = Clear OC1A on compare match; set at TOP
  • 6 COM1A0 = 0
  • 5 COM1B1 = 0
  • 4 COM1B0 = 0
  • 3 Resv = 0
  • 2 Resv = 0
  • 1 WGM11 = 1 WGM11(1); WGM10(0) = PWM from OCR1A based on TOP=ICR1
  • 0 WGM10 = 0

Timer 1 Control register B (TCCR1B):

  • 7 ICNC1 = 0
  • 6 ICES1 = 0
  • 5 Resv = 0
  • 4 WGM13 = 1 WGM13(1); WGM12(1) = PWM from OCR1A based on TOP=ICR1
  • 3 WGM12 = 1
  • 2 CS12 = 0 CS12(0); CS11(0); CS10(1) = Prescaler = PCK/CK i.e. run at Clock speed
  • 1 CS11 = 0
  • 0 CS10 = 1

Timer 1 Control Register C left all zeros.

I don’t know if it was the version of the ATtinyCore I was using, but the bit and register definitions for Timer1 for the ATtiny2313 didn’t seem to match the datasheet, so I just used the bit codes directly.

In terms of ATtiny2313 pin definitions, the following were used:

  • Hardware serial receive on D0 (PD0) which is physical pin 2.
  • Gate output on D11 (PB2) which is physical pin 14.
  • CV output using the PWM signal tied to OC1A triggered off timer 1, which is D12 (PB3) on physical pin 15.

A quick note on the MIDI serial handling.  My first code was very lazy and basically said:

Loop:
  IF (serial data received) THEN
    read MIDI command value
    IF (MIDI note on received) THEN
      read MIDI note value
      read MIDI velocity value
      set CV out value based on MIDI note value
      set Gate signal HIGH
    ELSE IF (MIDI note off received) THEN
      read MIDI note value
      read MIDI velocity value
      set CV out value based on MIDI note value
      set Gate signal LOW
    ELSE
      ignore and go round again waiting for serial data
    ENDIF
  ENDIF
END Loop

This generated a very quirky set of issues.  Basically when there was serial data available and a MIDI note on or off command detected, the read of the note and velocity data was returning and error (-1) which I never bothered checking.  Basically the code was running too fast and the next MIDI byte hadn’t registered yet.  So when (-1) was passed on as the MIDI note, it was resulting in a note on code thinking the MIDI note was 255, which was rounded up to the highest note (96).

The result was that I could see the gate pulsing in response to MIDI note on and off messages, but the CV voltage went high as soon as the first MIDI message was received.

The next version used test that said

IF (at least three bytes of serial data received) THEN

which means that if things get out of sync, eventually bytes are skipped until there are three bytes that equate to a note on/off message.  Crude, but it worked enough to show the principle.

The final code includes proper handling of the “Running Status” of MIDI, as described here: http://midi.teragonaudio.com/tech/midispec/run.htm

I used the 8MHz internal clock for the ATtiny85.

To test all of it together, I used my ATtiny85 MIDI Tester.

I might add some kind of selection for the MIDI channel.  Right now its hard-coded in a #define.  One option might be using an analogue input and a multi-position switch with a resistor network.  Or maybe a “tap to increase the channel” digital input switch.  Or if I use the 2313 version, I could use more pins and use a BCD or hex rotary switch or DIP switches.

2019-03-02 16.00.27

Here is the full code for the ATtiny85 version, which can be loaded up from the Arduino environment using the ATtiny85 core by Spence Konde. 

// MIDI to CV using ATTiny85
// NB: Use Sparkfun USB ATTiny85 Programmer
//     Set Arduino env to USBTinyISP
//     Set to 8MHz Internal Clock (required for MIDI baud)
#include <SoftwareSerial.h>

#define MIDIRX 3  // 3=PB3/D3 in Arduino terms = Pin 2 for ATTiny85
#define MIDITX 4  // 4=PB4/D4 in Arduino terms = Pin 3 for ATTiny85
#define MIDICH 2
#define MIDILONOTE 36
#define MIDIHINOTE 96

// Output:
//  PB2 (Ardiuno) = Pin 7 = Gate Output
//  PB1 (Arduino) = Pin 6 = Pitch CV Output
//
// PB5 set as digital output
// PB1 used as PWM output for Timer 1 compare OC1A
#define GATE    2  // PB2 (Pin 7) Gate
#define PITCHCV 1  // PB1 (Pin 6) Pitch CV

SoftwareSerial midiSerial(MIDIRX, MIDITX);

void setup() {
  // put your setup code here, to run once:
  midiSerial.begin (31250); // MIDI Baud rate

  pinMode (GATE, OUTPUT);
  pinMode (PITCHCV, OUTPUT);

  // Use Timer 1 for PWM output based on Compare Register A
  // However, set max compare value to 239 in Compare Register C
  // This means that output continually swings between 0 and 239
  // MIDI note ranges accepted are as follows:
  //    Lowest note = 36 (C2)
  //    Highest note = 96 (C7)
  // So there are 60 notes that can be received, thus making each
  // PWM compare value 240/60 i.e. steps of 4.
  //
  // So, for each note received, PWM Compare value = (note-36)*4.
  //
  // Timer 1 Control Register:
  //   PWM1A = PWM based on OCR1A
  //   COM1A1 = Clear OC1A (PB1) output line
  //   CS10 = Prescaler = PCK/CK i.e. run at Clock speed
  //   PWM1B is not enabled (GTCCR = 0)
  //
  TCCR1 = _BV(PWM1A)|_BV(COM1A1)|_BV(CS10);
  GTCCR = 0;
  OCR1C = 239;
  OCR1A = 0; // Initial Pitch CV = 0 (equivalent to note C2)
  digitalWrite(GATE,LOW); // Initial Gate = low
}

void setTimerPWM (uint16_t value) {
  OCR1A = value;
}

void loop() {
  if (midiSerial.available()) {
    // pass any data off to the MIDI handler a byte at a time
    doMIDI (midiSerial.read());
  }
}

uint8_t MIDIRunningStatus=0;
uint8_t MIDINote=0;
uint8_t MIDILevel=0;
void doMIDI (uint8_t midibyte) {
  // MIDI supports the idea of Running Status.
  // If the command is the same as the previous one, 
  // then the status (command) byte doesn't need to be sent again.
  //
  // The basis for handling this can be found here:
  //  http://midi.teragonaudio.com/tech/midispec/run.htm
  //
  // copied below:
  //   Buffer is cleared (ie, set to 0) at power up.
  //   Buffer stores the status when a Voice Category Status (ie, 0x80 to 0xEF) is received.
  //   Buffer is cleared when a System Common Category Status (ie, 0xF0 to 0xF7) is received.
  //   Nothing is done to the buffer when a RealTime Category message is received.
  //   Any data bytes are ignored when the buffer is 0.
  //

  if ((midibyte >= 0x80) && (midibyte <= 0xEF)) {
    //
    // MIDI Voice category message
    //
    // Start handling the RunningStatus
    if ((midibyte & 0x0F) == (MIDICH-1)) {
      // Store, but remove channel information now we know its for us
      MIDIRunningStatus = midibyte & 0xF0;
      MIDINote = 0;
      MIDILevel = 0;
    } else {
      // Not on our channel, so ignore
    }
  }
  else if ((midibyte >= 0xF0) && (midibyte <= 0xF7)) {
    //
    // MIDI System Common Category message
    //
    // Reset RunningStatus
    MIDIRunningStatus = 0;
  }
  else if ((midibyte >= 0xF8) && (midibyte <= 0xFF)) {
    //
    // System real-time message
    //
    // Ignore these and no effect on the RunningStatus
  } else {
    //
    // MIDI Data
    //
    if (MIDIRunningStatus == 0) {
      // No record of state, so not something we can
      // process right now, so ignore until we've picked
      // up a command to process
      return;
    }
    // Note: Channel handling has already been performed
    //       (and removed) above, so only need consider
    //       ourselves with the basic commands here.
    if (MIDIRunningStatus == 0x80) {
      // First find the note
      if (MIDINote == 0) {
        MIDINote = midibyte;
      } else {
        // If we already have a note, assume its the level
        MIDILevel = midibyte;

        // Now we have a note/velocity pair, act on it
        midiNoteOff (MIDINote, MIDILevel);
        MIDINote = 0;
        MIDILevel = 0;
      }
    } else if (MIDIRunningStatus == 0x90) {
      if (MIDINote == 0) {
        MIDINote = midibyte;
      } else {
        // If we already have a note, assume its the level
        MIDILevel = midibyte;
        
        // Now we have a note/velocity pair, act on it
        if (MIDILevel == 0) {
          midiNoteOff (MIDINote, MIDILevel);
        } else {
          midiNoteOn (MIDINote, MIDILevel);
        }
        MIDINote = 0;
        MIDILevel = 0;
      }
    } else {
      // MIDI command we don't process
    }
  }
}

void midiNoteOn (byte midi_note, byte midi_level) {
  // check note in the correct range of 36 (C2) to 90 (C7)
  if (midi_note < MIDILONOTE) midi_note = MIDILONOTE;
  if (midi_note > MIDIHINOTE) midi_note = MIDIHINOTE;

  // Scale to range 0 to 239, with 1 note = 4 steps
  midi_note = midi_note - MIDILONOTE;

  // Set the voltage of the Pitch CV and Enable the Gate
  digitalWrite (GATE, HIGH);
  setTimerPWM(midi_note*4);
}

void midiNoteOff (byte midi_note, byte midi_level) {
  // check note in the correct range of 36 (C2) to 90 (C7)
  if (midi_note < MIDILONOTE) midi_note = MIDILONOTE;
  if (midi_note > MIDIHINOTE) midi_note = MIDIHINOTE;

  // Scale to range 0 to 239, with 1 note = 4 steps
  midi_note = midi_note - MIDILONOTE;

  // Set the voltage of the Pitch CV and Enable the Gate
  digitalWrite (GATE, LOW);
  setTimerPWM(midi_note*4);
}

 

Permalink 10 Comments

ATtiny85 MIDI Tester

January 25, 2019 at 10:28 pm (maker, music) (, , )

Having spent some time messing about with building simple synthesizer circuits, I’m putting together a simple MIDI to CV converter.  I have one using an ATtiny85 but think I’m struggling from the fact it is only using SoftwareSerial, so I plan to have another go with an ATtiny231w pretty soon now.

One thing I was missing though was a simple “hands free” MIDI tester.  Now it would be fairly simple to hook up my laptop or a keyboard to a MIDI cable and use that, but I wanted something I could just plug in and leave sending MIDI data out to whatever I was building.  So the idea of using a simple USB-powered ATTiny85 to creating a continuous set of MIDI note on and not off messages was born.

I’m using one of those cheap Digispark USB clones you can buy. I had no luck ever getting the USB programming side of it to work, (its supposed to be able to have the nucleus boot loader installed to provide a software USB implementation), but its easy to programme if you have an 8-pin DIL test clip, in my cased hooked up to a sparkfun tiny programmer.

2019-01-25 21.22.26

Basic design notes for the board:

  • P1 (equivalent to Arduino D1 and the ATtiny85 pin 6) has the built-in LED.
  • I’m using P2 as MIDI TX and P3 as (unused) MIDI RX (D2 and D3, mapped to ATtiny85 pins 7 and 2).
  • P0 (ATtiny85 pin 5) as a digital input with internal pull-up resistors enabled.

I’m using a simple MIDI out circuit from the Internet that shows:

  • DIN pin 5 – MIDI OUT signal directly connected to P2.
  • DIN pin 2 – MIDI ground.
  • DIN pin 4 – MIDI +5v via a 220R resistor.

The resistor was soldered inside an in-line female MIDI DIN socket.

2019-01-25 21.36.522019-01-25 21.42.10

A switch was soldered across from P0 to GND on the Digispark board.  The code will flash the LED when the switch is registered so you know you’ve done something.

That is pretty much it.

2019-01-25 21.51.47

2019-01-25 21.51.56

In terms of code, I just tested it with an increasing scale of a few octaves, with the switch being used to increase the tempo (by reducing the delay between notes). Of course, you can use whatever test pattern works for you.

My initial (simple) code below.

Important: You must “set the fuses” to use the internal 16MHz clock in order to get the MIDI baud rates for the SoftwareSerial implementation.

Kevin

// MIDI Code Test Generator using ATtiny85
// NB: Use Sparkfun USB ATtiny85 Programmer
//     Set Arduino env to USBTinyISP
//     Set 16MHz Internal Clock (required for MIDI baud)
#include <SoftwareSerial.h>

// Pin Mapping for DigiSpark USB/ATtiny85
//  P0 = PB0/D0 = Pin 5 Attiny85
//  P1 = PB1/D1 = Pin 6 - built-in LED
//  P2 = PB2/D2 = Pin 7
//  P3 = PB3/D3 = Pin 2 - wired to USB+
//  P4 = PB4/D4 = Pin 3 - wired to USB-
//  P5 = PB5/D5 = Pin 1 - wired to RESET
//
// Use the Arduino D numbers below (which are the same as Digispark P numbers)
#define MIDITX   2
#define MIDIRX   3
#define BUTTON   0
#define BLTINLED 1

// MIDI Parameters for testing
#define MIDI_CHANNEL     1
#define MIDI_LOWNOTE     36
#define MIDI_HIGHNOTE    90
#define MIDI_VELOCITY    64
#define MIDI_DELAYMAX    550
#define MIDI_DELAYMIN    50
#define MIDI_DELAYSTEP   100

#define MIDI_NOTEON      0x90
#define MIDI_NOTEOFF     0x80

SoftwareSerial midiSerial(MIDIRX, MIDITX);

int delayRate;
int buttonState;
int lastButtonState;
byte midiNote;

void setup() {
  // Switch will trigger HIGH->LOW
  pinMode (BUTTON, INPUT_PULLUP);
  pinMode (BLTINLED, OUTPUT);
  digitalWrite (BLTINLED, LOW);
  buttonState = HIGH;
  lastButtonState = HIGH;
  
  midiSerial.begin (31250); // MIDI Baud rate

  delayRate = MIDI_DELAYMAX;
  midiNote  = MIDI_LOWNOTE;
}

void loop() {
  buttonState = digitalRead (BUTTON);
  if ((lastButtonState == HIGH) && (buttonState == LOW)) {
    ledOn();
    delayRate = delayRate - MIDI_DELAYSTEP;
    if (delayRate < MIDI_DELAYMIN) delayRate = MIDI_DELAYMAX;
  }
  lastButtonState = buttonState;

  midiNoteOn (MIDI_CHANNEL, midiNote, MIDI_VELOCITY);
  delay (400); // Need note on long enough to sound
  midiNoteOff (MIDI_CHANNEL, midiNote);
  delay (delayRate);

  midiNote++;
  if (midiNote > MIDI_HIGHNOTE) midiNote = MIDI_LOWNOTE;
  
  ledOff();
}

void midiNoteOn (byte midi_channel, byte midi_note, byte midi_vel) {
  midiSerial.write (midi_channel+MIDI_NOTEON);
  midiSerial.write (midi_note);
  midiSerial.write (midi_vel);
}

void midiNoteOff (byte midi_channel, byte midi_note) {
  midiSerial.write (midi_channel+MIDI_NOTEOFF);
  midiSerial.write (midi_note);
  midiSerial.write ((byte)0);
}

void ledOn () {
  digitalWrite (BLTINLED, HIGH);
}

void ledOff () {
  digitalWrite (BLTINLED, LOW);  
}

Permalink 1 Comment

John Stump 1944-2006

May 28, 2018 at 8:03 pm (interesting, music) (, )

Whilst scanning  back through old posts, I found Adagio Cantabile with a rock tempo feel … describing a parody piece of music, designed to be unplayable, by John Stump.  However on following the links, it turns out that the Wikipedia page describing the work was deleted, with the deletion log effectively concluding:

Delete There is absolutely nothing to suggest this classical music spoof is notable enough for inclusion in an international encyclopedia.

Knowing what I know of music, human nature, parody and general good fun (and also some of what is included in said international encyclopedia), I couldn’t disagree more!  There are countless classrooms around the world with this piece of music on a poster on the wall and many a music student will know of it.  For that reason alone it should be included and a little of its history ought to be recorded.

Thankfully, where Wikipedia fails, a nephew of John Stump comes to the rescue.  You can read about the mischievous composer here on Greg’s Lost in the Clouds blog:

He had worked in the field of “music engraving” for most of his life, beginning in 1967, and I remember looking with fascination at his “music typewriter” in his office in my grandmother’s garage, so it didn’t surprise me that Uncle John would have created something like this fake musical piece.

Turns out he wrote two other satirical pieces, all three of which are preserved on the web site of  Bryan Higgins.  Here you can find:

Along with two other works in a similar vein by others:

(the rest of Bryan’s collection is worth a browse too – a bit of an eclectic collection)

Greg and Bryan, thank you for going where Wikipedia appears not to have the collective imagine to tread.  The Internet is a better place for it.

Kevin

Permalink Leave a Comment

ATtiny85 Synth

March 31, 2018 at 3:38 pm (maker, music) (, , , )

I’ve wanted to make a simple synth for a while and stumbled across the DSPSynth site from Jan Ostman, which provides a range of designs for Euro-module compatible synthesizer modules.  One thing that really caught my eye was the CZ1 chip which implements the Casio Phase Distortion method of sound synthesis (I used to have a Casio CZ synth).  The chip is based on an ATtiny85 and the code was available as open source, but the original site appears to be no more.

Unfortunately, being a bit of an ATtiny85 novice, it wasn’t totally clear to me quite how to put this together from the bits and pieces I had lying around.  So this is by way of documenting how I got this going based on the circuits and code from the original site.

Note I can’t help anyone with the original code or details of the build, sorry.

Building the Synth

Parts list for me:

I originally grabbed a couple of very cheap “ATtiny85 devboards” off ebay that include a micro-USB connection, but these turned out just to be a way of powering the boards, not programming them.  I tried using an Arduino as an in-circuit programmer, but in the end the Sparkfun programmer was so easy to use, I just use that now all the time.

dspsynth provides two circuits related to the CZ1 chip.  On the main HP3 paperface module page is a complete euro-module compatible circuit including power regulator and jacks for inputs and outpus.  In the “CZ1 manual” is a much simpler circuit that just shows a simple output stage as follows:

dsp-cz1

So I used this as my output side.  For the inputs, I took two 10k pots connected to the input pins via a 22k resistor each as shown in the full dsp paperface circuit (but without the jack connectors).

The whole thing was powered using the 5v and GND pins from one of those cheap USB “devboards” I mentioned, although I didn’t use that to host the ATtiny85 itself as they aren’t really breadboard friendly.  I did need a simple 8-pin socket adaptor to breadboard adaptor to seat the ATtiny85 nicely though.  Pics below.

2018-03-31 16.04.292018-03-31 16.05.112018-03-31 16.05.17

2018-03-31 16.03.58

Programming the ATTiny85

The source code was provided on the original site, but that seems now to be offline.  The official module used the TinyAudioBoot system which allows you to upload firmware over one of the audio inputs.  I didn’t bother with that for my tinkering, so I was just loading the pdvco.ino source directly using the Arduino IDE and the Sparkfun programmer.

One thing that had to be done was “set the fuses”.  As I say, as a ATTiny85 novice, this took a bit of googling.  But it turns out all I really needed was to set the internal clock for the device to 16MHz (I uploaded the code without this step and there were some very interesting audio effects coming out of the thing – as you’d expect the digital to analogue conversion was all off sync).

If you select the right parameters in the Arduino IDE (ATtiny85; Clock: Internal 16MHz) and then select “burn bootloader” this has the effect of setting the fuses for the clock speed.  At this point, when the code fired up it all seemed to work and sounded a lot better.

Next Steps

Now I’ve had a bit of a play and an see what the ATtiny85 can do, I plan to explore some more of his designs.  Of particular interest is seeing if I can create a MIDI in to CV module using the principles in his USB MIDI to CV interface. But I want real MIDI so will be experimenting with the serial ports on the ATTIny85 (and worrying about getting MIDI to 5v input levels).

Kevin

 

Permalink 1 Comment

Next page »